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"Runtime Aware Architectures", Mateo Valero, HiPEAC CSW 2014, Barcelona.
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Design goals

I Performance
I Area
I Power/energy
I Football is like a short blanket, if you cover your head, you

uncover your feet, and if you cover your feet, you uncover
your head (Elba de Pádua)

I Priorities depend on purpose:
server, desktop, laptop, mobile, embedded

I But computer architecture has a historical strong bias
towards performance...
until forced to do otherwise (power wall)
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What does performance mean?

I Latency: time until task completion
I Tcpu = cycles ∗ Tcycle = inst ∗ CPI ∗ Tcycle
I Dynamic instruction count
I CPI: Cycles per instruction

I Throughput: amount of work made per time unit (e.g.
bandwidth)

I IPC: Instructions per cycle
I CPI = 1/IPC
I Simultaneous Multi-threading (SMT): improves throughput,

not latency
I Memory bandwidth, network bandwidth
I Application specific: webpages/second, queries/second...
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Latency vs. Throughput, Peak vs. Average

I User: latency
I System: throughput
I Better latency -> better throughput
I Better throughput with equal latency
I Peak IPC does not matter, we want high average IPC
I We want low power in avg, but peak DOES matter

-> temp cooling, power supply requirements
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The Power Wall
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Power and Energy

I Powerdyn = 1/2 ∗ Capacitive load ∗ Voltage2 ∗ Freq
I Powerstatic = Currentstatic ∗ Voltage
I Energydyn = Capacitive load ∗ Voltage2

I Frequency scales roughly linearly with voltage
I Power ∝ V3

I 1% extra performance translates 3% extra power
I This means that power-saving techniques must reduce 3x

power w.r.t. performance degradation

O. Palomar BSC 7/ 61



Computer architecture techniques and power dissipation

The rest of the talk

I Some classic computer architecture techniques
with their implications w.r.t power

I Pipelining
I Cache hierarchy
I Speculation
I Out-of-order execution

I The ParaDIME project and current C.A. trends
I Multi/many-core processors
I Heterogeneous computing
I Reduced precision
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Pipelining
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Motivation

I Programmer assumes sequential execution of each inst
I Instruction execution: sequential use of proc. logic

I Read instruction from memory
I Decode instruction
I Read registers
I Operate data
I Write result

I When a given structure is used, the others are idle
I If inst must complete before executing the next one,

the resources of the processor are underutilized

"Computer Architecture: A Quantitative Approach", H. and P., pp. A-8, 4th Ed, 2006.
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Historical perspective

"Runtime Aware Architectures", Mateo Valero, HiPEAC CSW 2014, Barcelona.
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Implementation: Divide and Conquer

I Divide execution in several stages (pipeline)
I Instructions progress through the pipeline
I So overlapped execution of several instructions
I Ideal IPC = 1 (improves throughput,

1 inst same latency, overall time improves)
I Control logic is more complex
I Multiple control (PC, Instruction), operands

-> stage latches

O. Palomar BSC 12/ 61



Computer architecture techniques and power dissipation Pipelining

Pipeline stages

I Fetch stage: read inst and update PC
I Decode stage: decode inst and read reg
I Execute stage: perform operation
I Memory stage: access memory if needed
I Write stage: update dst register

"Computer Architecture: A Quantitative Approach", H. and P., pp. A-9, 4th Ed, 2006.
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Hazards

I Data: inst reads the result of previous inst. Example:
ADD R1, R2, R3; F|D|X|M|W
SUB R3, R4, R5; F|D|X|M|W

I Control: Control inst evaluated (condition, next PC)
before fetching next inst

I Structural: Two inst need to use the same structure
I Simplest solution: stall (wait) until hazard disappears:

result is written, next PC is known, structure is free
I Stall -> low IPC, so more complex solutions are used

ADD R1, R2, R3; F|D|X|M|W
SUB R3, R4, R5; F|S|S|D|X|M|W
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Bypasses

I Avoid stalls in data hazards, a.k.a. Forwarding
I The result is available after stage X

but we must wait to update and read registers
I The result is needed before beginning of stage X
I Bypass: data sent from producer to consumer ASAP

ADD R1, R2, R3; F|D|X|M|W
SUB R3, R4, R5; F|D|X|M|W

I Introduces muxes to select the source of the operand
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Pipelining++

I Superpipelining: more stages. Higher frequency.
Several fetch stages, etc. Pentium 4: 20 stages (31 stages
in Prescott)

I Drawbacks: latch overhead, tight loops
I Superscalar: process several inst per cycle.

Higher IPC. Ideal IPC > 1.0
I Drawbacks: more complex logic, hazards, bypasses

"Runtime Aware Architectures", Mateo Valero, HiPEAC CSW 2014, Barcelona.
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Power

I Higher power as a direct consequence of higher clock
frequency. Pentium 4: 20-31 stages

I Overhead of pipeline stage latches
I Overall: quite simple additional hardware

"Optimum Power/Performance Pipeline Depth", A. Hartstein and Thomas R. Puzak, MICRO-36 2003.
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The cache hierarchy
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The memory wall

I Increasing gap in latency, many cycles to do an access
I Tcyclecpu << Taccessmem
I We want large memories, which have higher latencies

"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.
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Locality

I Memory instructions amongst the most used
I But some @ are accessed more
I For instance, inst in a loop
I This property is called locality
I Temporal locality: reuse data

I After accessing @x, it is likely to access @x+1 soon
I Spatial locality: use neighbor data

I After accessing @x, it is likely to access @x again soon
I 90/10 rule of thumb: 90% of accesses to 10% of @
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Benefit from locality

I Put most accessed data in fast (but small) SRAM (cache)
I Place the rest in large (but slow) DRAM (main memory)
I Detection of most accessed data? Locality
I Temp loc. -> on first access to @ copy data to cache
I Spatial locality -> store also neighbor data

Memory is divided in blocks of consecutive words
I Two possibilities when accessing the cache

I Hit: desired block is in cache -> read data
I Miss: otherwise -> bring it from next level
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Reducing Misses

I MissRate = Misses/Accesses: as low as possible
I Different techniques depending on miss class

I Larger cache to store more blocks
I Pre-fetch: access blocks before actually needed (SW/HW)
I Change software (e.g. blocking)
I Associativity: allow placing block in different lines
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Placement policies

I Direct Mapped: lower bits of block @ index cache line
Simple logic, many conflict misses.

I Fully Associative: block can be placed in any cache line
Compare each cache line’s tag
(CAM: Content Addressable Memory)
Complex (slow or small) logic, fewer misses.

I k-Way Set-Associative: lower bits of block @
index a set of k cache lines. F.A. inside the set.
8-Way near same miss rate as F.A.

I Higher associativity increases power. Can be limited by
restricting parallel lookups
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Miss Rate

"Computer Architecture: A Quantitative Approach", H. and P., pp. C-24, 4th Ed, 2006.
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Improvements: Multi-level Caches

I Memory wall: too much penalty if cache miss
I Place another cache level (L2)
I Larger and slower than L1
I But still much faster than memory
I Inclusive vs. exclusive
I In multi-core processors: Repeat idea -> L3

"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.

O. Palomar BSC 25/ 61



Computer architecture techniques and power dissipation The cache hierarchy

Improvements: Separate Instruction and Data Caches

I Inst and data have different access patterns
I Inst have lower miss rate but cost is higher
I Separate Inst and Data Caches

"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.
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Power breakdown (1)

"Memory systems: Cache, DRAM, Disk", Bruce Jacob et al., Ed. Morgan Kaufmann, 2008.

O. Palomar BSC 27/ 61



Computer architecture techniques and power dissipation The cache hierarchy

Power breakdown (2)

"Memory systems: Cache, DRAM, Disk", Bruce Jacob et al., Ed. Morgan Kaufmann, 2008.
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Data movement

"Exascale Computing Technology Challenges", J. Shalf et al., VECPAR 2010.
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Speculation
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Motivation

I Waiting to resolve a dependency may take many cycles
I This results in significant pipeline bubbles, which seriously

hurt performance
I A solution: speculate on the outcome and continue

execution based on the assumption
I If wrong, correct the results
I Significant performance speedups, but if frequently

misspeculated, a lot of energy is wasted on useless
computation

I Two important cases: branches and load-store aliasing
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Load-store aliasing

I Memory accesses to the same address must be serialized
I Accesses to different addresses can proceed in parallel
I The problem is that it may take a number of cycles to

calculate the address
I Solution: assume they are independent
I If misspeculation, correct and record the case (StWait,

Store Sets)
I Next time, stall until address is calculated
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Branch prediction: motivation

I Non-control inst: PC++
I Until control inst completes, next PC is not known
I Conditional branches: Condition must be evaluated

to know if taken or not taken
I Indirect branches: Read next PC
I Just stall fetch -> many wasted cycles

"Computer Organization and Design: The Hardware/Software Interface", P. and H., 3th Ed., 2004.
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Can we speculate?

I Actual next PC not known until branch completes,
but sometimes is predictable

I Many cond. br. are predictable with high confidence

sum=0; // MOVI R0, 0;
i=0; // MOVI R1, 0;
do { // loop:
sum+=a[i]; // LD R2, a(R1);

// ADD R0, R2, R0
i++; // ADDI R1, R1, 1

} while (i<1000); // BNEQ R1, 1000, loop

The branch is taken 1000 times
and changes to not taken on last iteration
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Branch prediction

I What is predicted?
I Direction of conditional branches (Taken/Not Taken)
I Target @

I The prediction is either correct...
I It is called a Hit
I Both direction and target prediction must match to hit

I ...or incorrect
I Known as Miss
I On a miss: flush pipeline, undo wrong-path changes
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Predicting direction

I PC-indexed table of predictors
I But it has no tag (aliasing)
I Simple predictor: remember last direction of branch
I Poor HitRate. Ex: last, first iter. of loop-branch misses
I Better HitRate if pred resists to changes
I 2-bit saturating counter:

must miss twice to change predicted direction
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Improving the predictor: history

I Following code exposes problem of PC-indexed pred
for(i=0;i<100;i++)
if (i%2) a[i]++;

I The if-branch alternates Taken and Not Taken -> many
misses!

I But follows a regular pattern -> it can be predicted:
if prev branch T-> current NT; else current T;
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Further improvements

I Hash (combine, xor) PC and hist register bits
I Use several predictors (global, local, hist sizes, hashes)

and choose (majority, predictor of predictors)
I Neural-based predictors (perceptron)

"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.
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Overhead... but overall gains

"Power Issues Related to Branch Prediction", D. Parikh et al., HPCA 2002
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Misspeculated instructions

"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.
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Out-of-Order processors
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Stalled independent instructions

I In this code, SUB depends on LD,
but ADD is independent

LD x(R1), R2
SUB R2, R3, R4
ADD R5, R6, R7

I If LD misses, SUB and ADD stall many cycles
I An independent inst (ADD) can advance its execution?

Out-of-order (OoO) vs. In-Order (IO) execution
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Classifying data dependences

I Two dependent inst can have a data (real) dependence
that create a RAW (Read After Write) hazard

MUL R1, R2, R3
ADD R3, R4, R5

I An antidependence -> WAR (Write After Read) hazard
MUL R3, R4, R5
ADD R1, R2, R3

I An out dependence -> WAW (Write After Write) hazard
MUL R1, R2, R3
ADD R5, R4, R3

I Anti- and out: false or name dependences
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Removing dependences?

I Only real dependences must be honored...
I ...as long as write order is correct (WAW/WAR hazards)
I ...and speculative inst are “undoable”
I Out-of-order execution, in-order completion
I State is not actually updated until all older inst complete
I Beware: the relative order of memory accesses
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New elements

I Issue stage and queue
I Commit stage and ROB
I Register renaming
I Load and store queues

"Runtime Aware Architectures", Mateo Valero, HiPEAC CSW 2014, Barcelona.
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Issue stage and queue

I After inst is decoded, place it in issue queue (IQ)
I Select logic picks inst in IQ and sends to FU

I Inst must have all operands ready
I And an available FU
I Up to issue-width inst

I Wake-up logic notify result to dependent inst in IQ
I IQ needs comparators to check if dependent
I We must know which operands are ready at insert time

"Complexity-Effective Superscalar Processors", S. Palacharla et al., ISCA 1997.
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Energy efficiency?

"Optimization of High-Performance Superscalar Architectures for Energy Efficiency", V. Zyuban and P. Kogge,
ISLPED, 2000.
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Power breakdown

Intel Penryn Sun UltraSPARC T3
"Penryn: 45-nm Next Generation Intel R©CoreTM 2 Processor", V. George et al., IEEE ASSCC, 2007.

"A 40 nm 16-Core 128-Thread SPARC SoC Processor", J.L. Shin et al., IEEE JSSCC, Jan. 2011.
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Current trends and the ParaDIME project
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The ParaDIME project

I Parallel Distributed Infrastructure for Minimization of
Energy

I Combine techniques, cooperation and sharing of
information between layers (application, runtime,
programming model, hardware, device) for energy-efficient
data-centers

I e.g. annotations for reduced precision and high
performance vs low power sections
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The ParaDIME Consortium

AOTerra is now Cloud&Heat (www.cloudandheat.com)
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The ParaDIME stack
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Multi/many-cores

I Trend is to increase number of cores (Xeon Phi)
I Programmability is a great concern/open issue
I Dark silicon also consider a problem

"Dark Silicon and the End of Multicore Scaling", H. Esmaeilzadeh et al., ISCA 2011.
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Coherence and consistency

I Consistency model: write order
I Cache coherence problem: one proc updates data

but another reads old cached value

I Coherent system if:
I If PA reads X after PA writes X, PA reads new value
I If PA reads X after PB writes X, PA reads new value
I Writes serialization (seen in same order everywhere)

I Enforce coherence granting exclusive access and
invalidating cache lines

I Cache coherence protocols
"Computer Architecture: A Quantitative Approach", H. and P., 5th Ed, 2012.
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Cache protocols

I Possible states: Modified, Shared, Invalid (MSI)
additionally: Owned, Exclusive (MESI, MOESI)

I Invalidate (if other proc wants to write)
I Send cached copy (if it was written)

I Scalability to many cores? Overhead of maintaining
coherence?
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Message passing

I In ParaDIME we are studying how to build a many-core
without cache coherence

I Precedent: Intel SCCC: Single-Chip Cloud Computer
I Leverage actor-based programming model
I We will include support for cache-to-cache delivery,

avoiding unnecessary copies of data
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Heterogeneous computing

I Heterogeneous systems can be much more power-efficient
(dark silicon, Green500)

I GPGPUs, Xeon Phi, FPGAs, big.LITTLE...
I In ParaDIME, message passing co-processor and vector

accelerators
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Reduced precision

I Switch off as many elements of the processor as possible,
whenever they are not used/necessary (dark silicon again)

I Unused cores, ALUs, etc.
I Shrink cache, ROB, branch predictor at run-time, trading

performance and power
I Reduced precision: operate with much smaller data types.

Save energy in FU, data movement, etc. at the cost of
accuracy

I The programmer indicates in which parts of the code this
can be applied
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Further reading

I "Computer Architecture: A Quantitative Approach", Hennessy and
Patterson, 5th Ed., Morgan Kaufmann, 2012.

I "Computer Organization and Design: The Hardware/Software
Interface", Patterson and Hennessy, 5th Ed., Morgan Kaufmann, 2013.

I "Computer Architecture Techniques for Power-Efficiency", Kaxiras and
Martonosi, Morgan Claypool, 2008.

I "Dark Silicon and the End of Multicore Scaling", H. Esmaeilzadeh et al.,
ISCA 2011.

I "Complexity-Effective Superscalar Processors", S. Palacharla et al.,
ISCA 1997.

I Selected ParaDIME papers:
I "System-Level Power and Energy Estimation Methodology for Open Multimedia Applications

Platform", S. K. Rethinagiri et al., ISVLSI, 2014.
I "Memory Controller for Vector Processor", T. Hussain, ASAP, 2014.

I "Leveraging Transactional Memory for Energy-efficient Computing below Safe Operation Margins",

A. Cristal et al., TRASACT, 2013.
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Conclusions

I The power wall has led to reevaluate ALL C.A.
I New trade-offs in issue width, out-of-order vs. in-order, etc.
I Performance vs power consumption, latency vs.

throughput, locality
I New design choices, e.g. many simple cores vs. few

complex cores
I Old ideas can be useful now (vector architectures, dataflow

execution, ... )
I A lot of other ideas

I Multi- (many) core are here to stay, but there is a problem
with their programmability

I Programmability wall
I A lot of effort: transactional memory, actors, tasks...

I Dark silicon threat and exascale goal puts even more
pressure to improve power-efficiency

I While importance of mobile market makes energy
minimization the first concern
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THANKS!
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