Computer architecture techniques and power dissipation

Computer architecture techniques
and power dissipation

Oscar Palomar

Barcelona Supercomputing Center

July 2014

O. Palomar BSC 1/ 61

Technology Trends

Technology Trends:

Microprocessor Capacity
transistors

Pentiuma 4 Processor| 100,000,000
) Pentiums it Processor
MOORE'S LAW . 16,000.000
entium® Il Processor , 3
Pentium® Processor /

486™ DX Processor, /

1,000,000
386™ Processor, -~
1e oore’s Law «

/ 100,000
s08s l
8080 / Iz 10,000

o
- 1000

1970 1975 1980 1985 1990 1995 2000

2X transistors/Chip Every 1.5 years Gordon Moore (co-founder of

Called “Moore’s Law” Intel) predicted in 1965 that the

transistor density of semiconductor

Microprocessors have become chips would double roughly every
smaller, denser, and more powerful. 18 months.

Not just processors, bandwidth,

storage, etc
"Runtime Aware Architectures", Mateo Valero, HIPEAC CSW 2014, Barcelona.

O. Palom BSC 2/ 61

Design goals

O. Palomar

Performance
Area
Power/energy

Football is like a short blanket, if you cover your head, you
uncover your feet, and if you cover your feet, you uncover
your head (Elba de Padua)

Priorities depend on purpose:

server, desktop, laptop, mobile, embedded

But computer architecture has a historical strong bias
towards performance...

until forced to do otherwise (power wall)

BSC 3/ 61

What does performance mean?

» Latency: time until task completion
» Tepu = cycles * Teyele = inst * CPI x Teyele
» Dynamic instruction count
» CPI: Cycles per instruction

» Throughput: amount of work made per time unit (e.g.
bandwidth)
» |IPC: Instructions per cycle
CPlI=1/IPC
Simultaneous Multi-threading (SMT): improves throughput,
not latency
Memory bandwidth, network bandwidth
Application specific: webpages/second, queries/second...

v

v

v

v

O. Palomar BSC 4/ 61

Latency vs. Throughput, Peak vs. Average

O. Palomar

User: latency

System: throughput

Better latency -> better throughput

Better throughput with equal latency

Peak IPC does not matter, we want high average IPC

We want low power in avg, but peak DOES matter
-> temp cooling, power supply requirements

BSC 5/ 61

Computer architecture techniques and power dissipation

The Power Wall

Power Density vs. Critical Dimension

1000 Rocket Nozzle
100
N
£
(%) Pentium® 4 processor
= Pentium® Il processor ¢ .
; ¢ entium® |l processor
10
Pentium® Pro processor
Pentium® processor
0.01

Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS'09 ',B
011 (nte

Source: G.

s June2

O. Palom BSC 6/ 61

Power and Energy

O. Palomar

Powergyn = 1/2 * Capacitive load * Voltage? * Freq
Powergiic = Currentg,ic * Voltage

Energyqy, = Capacitive load * Voltage?

Frequency scales roughly linearly with voltage
Power o V3

1% extra performance translates 3% extra power

This means that power-saving techniques must reduce 3x
power w.r.t. performance degradation

BSC 7/ 61

The rest of the talk

» Some classic computer architecture techniques
with their implications w.r.t power
» Pipelining
» Cache hierarchy
» Speculation
» Out-of-order execution

» The ParaDIME project and current C.A. trends

» Multi/many-core processors
» Heterogeneous computing
» Reduced precision

O. Palomar BSC 8/ 61

Computer architecture techniques and power dissipation

Pipelining

O. Palom BSC 9/ 61

Computer architecture techniques and power dissipation

Pipelining

Motivation

» Programmer assumes sequential execution of each inst

» Instruction execution: sequential use of proc. logic

"Computer Architecture: A Quantitative Approach", H. and P, pp. A-8, 4th Ed, 2006.

O. Palomar

>

>

| 4

>

v

the resources of the processor are underutilized

Read instruction from memory
Decode instruction
Read registers

Operate data
Write result

» When a given structure is used, the others are idle
» If inst must complete before executing the next one,

BSC

10/ 61

Computer architecture techniques and power dissipation

Historical perspective

Ford T: el primer automovil fabricado en serie

Fast Core: High Frequencies

architecture
inimum control logic
* Leverage Out-of-Order resiliency
i distribution

"Runtime Aware Architectures”, Mateo Valero, HIPEAC CSW 2014, Barcelona.

BSC 11/ 61

Computer architecture techniques and power dissipation

Pipelining

Implementation: Divide and Conquer

» Divide execution in several stages (pipeline)
» Instructions progress through the pipeline
» So overlapped execution of several instructions

» Ideal IPC = 1 (improves throughput,
1 inst same latency, overall time improves)

» Control logic is more complex

» Multiple control (PC, Instruction), operands
-> stage latches

O. Palomar BSC

12/ 61

Computer architecture techniques and power dissipation Pipelining

Pipeline stages

Fetch stage: read inst and update PC
Decode stage: decode inst and read reg
Execute stage: perform operation
Memory stage: access memory if needed
Write stage: update dst register

vV v vV VY

Time (in clock cycles)

CcC1 cc2 cc3
n I Reg -a

CcCs cCe

{eg

SN

"Computer Architecture: A Quantitative Approach”, I—T.and P., pp. A-9, 4th Ed, 2006.

O. Palomar BSC 13/ 61

Computer architecture techniques and power dissipation Pipelining

Hazards

v

Data: inst reads the result of previous inst. Example:

ADD R1, R2, R3; F|DIX|M|W
SUB R3, R4, R5; FID|X|M|W

Control: Control inst evaluated (condition, next PC)
before fetching next inst

Structural: Two inst need to use the same structure

Simplest solution: stall (wait) until hazard disappears:
result is written, next PC is known, structure is free

Stall -> low IPC, so more complex solutions are used

ADD R1, R2, R3; FI|D|IX|MIW
SUB R3, R4, R5; FISISIDIX|M|W

v

v

v

v

O. Palomar BSC 14/ 61

Computer architecture techniques and power dissipation

Pipelining

Bypasses

v

Avoid stalls in data hazards, a.k.a. Forwarding

The result is available after stage X
but we must wait to update and read registers

The result is needed before beginning of stage X
Bypass: data sent from producer to consumer ASAP

ADD R1, R2, R3; FI|D|IX|M|W
SUB R3, R4, R5; FIDIX|M|W

Introduces muxes to select the source of the operand

v

v

v

v

O. Palomar BSC

15/ 61

Computer architecture techniques and power dissipation Pipelining

Pipelining++

» Superpipelining: more stages. Higher frequency.
Several fetch stages, etc. Pentium 4: 20 stages (31 stages
in Prescott)

» Drawbacks: latch overhead, tight loops

» Superscalar: process several inst per cycle.
Higher IPC. Ideal IPC > 1.0

» Drawbacks: more complex logic, hazards, bypasses

@20
A
2 .
IlII |||||||
5 . 5
P (‘0@ & @ng«“"l & B
L S &
&s‘ \f i M os
& & i Optimal Depth
o
w

& =&
& f &
e
&

& &
CH
Ll i K
de

& o

"Runtime Aware Architectures”, Mateo Valero, HIPEAC CSW 2014

&

Y

%,
o,
%

7,

o

,
“,
%

Q

O. Palomar BSC

16/ 61

Computer architecture techniques and power dissipation

Pipelining

Power

» Higher power as a direct consequence of higher clock
frequency. Pentium 4: 20-31 stages

» Overhead of pipeline stage latches
» Overall: quite simple additional hardware

1 L] - . - L L] L]
e e BIPS
0B b,
o . s
LR i m=
Los| { ¢ T
£ SV
= ol | I a M= .
- m=1 T .
L i *
oz | e, D ——
- - - . .
o
5 15 25
10 20
Pipeline Stages

Fig. 5 shows four different metrics as a function of pipeline
depth. Both theory and simulation are shown.

"Optimum Power/Performance Pipeline Depth", A. Hartstein and Thomas R. Puzak, MICRO-36 2003.

O. Palomar BSC

17/ 61

Computer architecture techniques and power dissipation The cache hierarchy

The cache hierarchy

BSC 18/ 61

The cache hierarchy

Computer architecture techniques and power dissipation

The memory wall

» Increasing gap in latency, many cycles to do an access

» Teyclecpy << Taccessmem
» We want large memories, which have higher latencies

100,000
[
[
E
§ 100 +
o
Memor)r_‘_‘_._‘_‘_ e
od - * —r—t
1 = . . : .
1980 1985 1990 1995 2000 2005 2010
Year

"Computer Architecture: A Quantitative Approach”, H. and P., 5th Ed, 2012.

O. Palomar BSC 19/ 61

Computer architecture techniques and power dissipation

The cache hierarchy

Locality

v

v

v

v

v

v

v

O. Palomar

Memory instructions amongst the most used
But some @ are accessed more
For instance, inst in a loop

This property is called locality
Temporal locality: reuse data

» After accessing @x, it is likely to access @x+1 soon

Spatial locality: use neighbor data

» After accessing @x, it is likely to access @x again soon

90/10 rule of thumb: 90% of accesses to 10% of @

BSC

20/ 61

Computer architecture techniques and power dissipation

The cache hierarchy

Benefit from locality

O. Palomar

vV VvV VY VvVYYy

v

Put most accessed data in fast (but small) SRAM (cache)
Place the rest in large (but slow) DRAM (main memory)
Detection of most accessed data? Locality
Temp loc. -> on first access to @ copy data to cache
Spatial locality -> store also neighbor data
Memory is divided in blocks of consecutive words
Two possibilities when accessing the cache

» Hit: desired block is in cache -> read data

» Miss: otherwise -> bring it from next level

Main memory

J

Cache

|
CPU

BSC

21/ 61

Computer architecture techniques and power dissipation The cache hierarchy

Reducing Misses

» MissRate = Misses/Accesses: as low as possible

» Different techniques depending on miss class

Larger cache to store more blocks

Pre-fetch: access blocks before actually needed (SW/HW)
Change software (e.g. blocking)

Associativity: allow placing block in different lines

v

vV vVvYyy

O. Palomar BSC 22/ 61

Computer architecture techniques and power dissipation The cache hierarchy

Placement policies

» Direct Mapped: lower bits of block @ index cache line
Simple logic, many conflict misses.

» Fully Associative: block can be placed in any cache line
Compare each cache line’s tag
(CAM: Content Addressable Memory)
Complex (slow or small) logic, fewer misses.

» k-Way Set-Associative: lower bits of block @
index a set of k cache lines. FA. inside the set.
8-Way near same miss rate as FA.

» Higher associativity increases power. Can be limited by
restricting parallel lookups

O. Palomar BSC

23/ 61

Computer architecture techniques and power dissipation The cache hierarchy

Miss Rate

0.10
0.09

0.08

0.07 @ 1-way
W 2-way
0.06 @ 4-way
O 8-way
Miss rate (.05 M Capacity
per type [0 Compulsory
0.04
0.03
0.02
0.01
0.00
4 8 16 32 64 128 256 512 1024

Cache size (KB)
"Computer Architecture: A Quantitative Approach”, H. and P., pp. C-24, 4th Ed, 2006.

BSC 24/ 61

Computer architecture techniques and power dissipation

Improvements: Multi-level Caches

O. Palomar

» Memory wall: too much penalty if cache miss
» Place another cache level (L2)

v

v

v

v

Larger and slower than L1

But still much faster than memory
Inclusive vs. exclusive
In multi-core processors: Repeat idea -> L3

Main memory
L2Cache

CPU [regs|

"Computer Architecture: A Quantitative Approach”, H. and P., 5th Ed, 2012.

¥

A N—
e

§§a‘¢

BSC

" 9
(RS

The cache hierarchy

25/ 61

Computer architecture techniques and power dissipation The cache hierarchy

Improvements: Separate Instruction and Data Caches

» Inst and data have different access patterns
» Inst have lower miss rate but cost is higher
» Separate Inst and Data Caches

Characteristic 1 12 13
Size 32KBU32KBD 256 KB 2 MB per core
Associativity 4wayU8-wayD -way 16-way
Access latency 4cycles, pipelined 10 cycles 35 cycles
Replacement scheme Pseudo-LRU Pseudo- Pseudo-LRU but with an
LRU ordered selection algorihtm
180
2 —— D:lucas —=— D:gec —%— |: gec
S 140 —D : :
£ gap —x kgap —e- I lucas
2 120
£ 100 \‘\‘-\—_._‘__‘_F_._d

Misses per 1000 i
»
&

4 16 64 256 1024 4096
Cache size (KB)

Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies
from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to 40,000 times larger than
lucas, and, conversely, data misses for lucas are 2 to 60 times larger than gcc. The pro-
'grams gap, gcg, and lucas are from the SPEC2000 benchmark suite.

"Computer Architecture: A Quantitative Approach”, H. and P, 5th Ed, 2012.

O. Palomar BSC 26/ 61

Computer architecture techniques power dissipation

Power breakdown (1)

(a) Power (breakdown by type)

90nm 32nm

subthreshold
less power

gate
leakage
power

dynamic
power

(b) Power (breakdown by source)
pipeline
overhead

bit line
power

others

FIGURE 29.6: Overview of cache power. (a) Dynamic and static power dissipation components for a 64 kB-4W cache in 90 nm
and 32 nm, () major components of power dissipation for a 64 kB-4way, 30-nm and 32-nm pipelined cache.

"Memory systems: Cache, DRAM, Disk", Bruce Jacob et al., Ed. Morgan Kaufmann, 2008.

BSC 27/ 61

Computer architecture techniques and power dissipation The cache hierarchy

Power breakdown (2)

O. Palomar

B - & » B « B .
T T T R T T B

i H
Z.T,ﬂHH...HHﬂaaaiHﬁiiiﬁﬂﬁiiiiﬂ
ST 8T8 TR T[T g T T TR

1288 I T

1288 0T

[

|§||\§'\|| HEBE

FIGURE 29.13: Detailed breakdown. Power breakdown showing major cache power contributors for the 65- and 32-nm technol-
‘ogy nodes for different cache sizes and associativities. Gache operating frequency increases with technology node. (Note that the
y-axis for both plots uses the same scale.)

5 ﬁ HR Hﬁﬂﬁaﬂﬁﬂﬁﬁwu H
v AR e

i 1sw

"Memory systems: Cache, DRAM, Disk", Bruce Jacob et al., Ed. Morgan Kaufmann, 2008.

BSC 28/ 61

Computer architecture techniques and power dissipation The cache hiera

Data movement

Intra-node/SMP Inter-node/MPI
e Communication Communication
c
2
1000
g
iy On-chip / CMP
> 100 communication
QU
E ~+now
K -#-2018
g =
T
o & Q R o
N \43’ & & §‘\
& & &£ & F & F
& & @9‘ e
+F & & K IS5
&

Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems

(the 2018 estimate is conservative and doesn’t account for the development of an advanced

memory part). The biggest change in energy cost is moving data off-chip. Therefore, future

programming environments must support the ability of algorithms and applications to exploit

locality which will, in turn, be necessary to achieve performance and energy efficiency.
"Exascale Computing Technology Challenges”, J. Shalf et al., VECPAR 2010.

O. Palom BSC 29/ 61

Computer architecture techniques and power dissipation Speculation

Speculation

BSC 30/ 61

Motivation

» Waiting to resolve a dependency may take many cycles

» This results in significant pipeline bubbles, which seriously
hurt performance

» A solution: speculate on the outcome and continue
execution based on the assumption

» If wrong, correct the results

» Significant performance speedups, but if frequently
misspeculated, a lot of energy is wasted on useless
computation

» Two important cases: branches and load-store aliasing

O. Palomar BSC 31/ 61

Load-store aliasing

» Memory accesses to the same address must be serialized
» Accesses to different addresses can proceed in parallel

» The problem is that it may take a number of cycles to
calculate the address

» Solution: assume they are independent

» If misspeculation, correct and record the case (StWait,
Store Sets)

» Next time, stall until address is calculated

O. Palomar BSC 32/ 61

Branch prediction: motivation

v

Non-control inst: PC++
Until control inst completes, next PC is not known

Conditional branches: Condition must be evaluated
to know if taken or not taken

Indirect branches: Read next PC
Just stall fetch -> many wasted cycles

v

v

v

v

“Time (in clock cycles) -
©c1 cC2 ©G3 0G4 GC5 CC6 CC7 CC8 0CS

T
oMk
wonisiz 5205 ['-I;h]:l:, o

48.0r$13, 86,92
}L‘I’ s
72 w34, 50(87) ”WAVR]:’ L I i

"Computer Organization and Design: The Hardware/Software Interface”, P. and H., 3th Ed., 2004.

el

52add 514,52, $2

O. Palomar BSC 33/ 61

Can we speculate?

» Actual next PC not known until branch completes,
but sometimes is predictable

» Many cond. br. are predictable with high confidence

sum=0; // MOVI RO, O;
i=0; // MOVI R1, O;
do { // loop:
sum+=al[i]; !/ LD R2, a(R1l);
// ADD RO, R2, RO
i++; // ADDI R1, R1, 1

} while (i<1000); // BNEQ R1, 1000, loop

The branch is taken 1000 times
and changes to not taken on last iteration

O. Palomar BSC 34/ 61

Branch prediction

» What is predicted?
» Direction of conditional branches (Taken/Not Taken)
» Target @

» The prediction is either correct...

» Itis called a Hit
» Both direction and target prediction must match to hit

» ...or incorrect

» Known as Miss
» On a miss: flush pipeline, undo wrong-path changes

O. Palomar BSC 35/ 61

Predicting direction

» PC-indexed table of predictors

» But it has no tag (aliasing)

» Simple predictor: remember last direction of branch

» Poor HitRate. Ex: last, first iter. of loop-branch misses
» Better HitRate if pred resists to changes

» 2-bit saturating counter:
must miss twice to change predicted direction

O. Palomar BSC 36/ 61

Improving the predictor: history

» Following code exposes problem of PC-indexed pred
for (1i=0;1<100; i++)
if (1%2) alil++;

» The if-branch alternates Taken and Not Taken -> many
misses!

» But follows a regular pattern -> it can be predicted:
if prev branch T-> current NT; else current T;

O. Palomar BSC 37/ 61

Further improvements

» Hash (combine, xor) PC and hist register bits

» Use several predictors (global, local, hist sizes, hashes)
and choose (majority, predictor of predictors)

» Neural-based predictors (perceptron)

Misgradicion rate
=
#

0%
qﬁﬁéﬂ &‘iﬁﬁfgﬁﬁ{@;‘ f;gf’ ‘féf@bﬁfdy}é’

Figure 3.5 The misprediction rate for 19 of the SPECCPU2006 benchmarks versus the number of successfully
retired branches Is slightly hgher on average for the integer benchmarks than for the FP (4% versus 3%). More
importantly, it Is much higher fora few benchmarks.

"Computer Architecture: A Quantitative Approach”, H. and P, 5th Ed, 2012.

O. Palomar BSC 38/ 61

Computer architecture techniques and power dissipation Speculation

Overhead... but overall gains

Overall Enargy

Bpred Eergy

[} e & ‘h LI IO L
FOCLS wxw AR i
u". G e? 1" q‘r
rodietors (Furs &y Fraicors Figure By

Tlgly T~ imge o (Bhanly Tbigp e Mhge o fokenhy
o1t - 2Specbmk - 54gep — ISEeer o peste - ISlgerkmk - Bhgep —ISSuwien
Dhhig Mlhwd w-verags bl M0l wdvenge

"Power Issues Related to Branch Prediction”, D. Parikh et al., HPCA 2002

BSC 39/ 61

Misspeculated instructions

;\H =
o
\@@

%
0%

5%

20%
155
10%
55
0%
@EF -

q;-éq 4"'&

o

Misspeculation

&
a G
S

.?
FARL

{\'?.

Flgure 3.25 The fractlon of Instructions that are executed as a result of misspeculation is typleally much higher
for integer programs (the first five) versus FP programs (the last five).

"Computer Architecture: A Quantitative Approach”, H. and P., 5th Ed, 2012.

O. Palo BSC 40/ 61

Computer architecture techniques and power dissipation Out-of-Order processors

Out-of-Order processors

BSC 41/ 61

Computer architecture techniques and power dissipation Out-of-Order processors

Stalled independent instructions

» In this code, SUB depends on LD,
but ADD is independent

LD x(R1l), R2
SUB R2, R3, R4
ADD R5, R6, R7

» If LD misses, SUB and ADD stall many cycles

» An independent inst (ADD) can advance its execution?
Out-of-order (O00) vs. In-Order (I0) execution

O. Palomar BSC 42/ 61

Computer architecture techniques and power dissipation Out-of-Order processors

Classifying data dependences

v

Two dependent inst can have a data (real) dependence
that create a RAW (Read After Write) hazard

MUL R1, R2, R3
ADD R3, R4, RS

An antidependence -> WAR (Write After Read) hazard

MUL R3, R4, RS
ADD R1, R2, R3

An out dependence -> WAW (Write After Write) hazard

MUL R1, R2, R3
ADD R5, R4, R3

Anti- and out: false or name dependences

v

v

v

O. Palomar BSC 43/ 61

Computer architecture techniques and power dissipation Out-of-Order processors

Removing dependences?

v

Only real dependences must be honored...
...as long as write order is correct (WAW/WAR hazards)
...and speculative inst are “undoable”

v

v

v

Out-of-order execution, in-order completion

v

State is not actually updated until all older inst complete

v

Beware: the relative order of memory accesses

O. Palomar BSC 44/ 61

Computer architecture techniques and power dissipation

Out-of-Order processors

New elements

» Issue stage and queue

» Commit stage and ROB
» Register renaming

» Load and store queues

Fetch
!
Decode
)
Rename
Instruction
Window
Register
file

"Runtime Aware Architectures”, Mateo Valero, HIPEAC CSW 2014, Barcelona.

O. Palomar BSC

Data Cache

Register

Write

Commit

45/ 61

Computer architecture techniques and power dissipation

Issue stage and queue

O. Palomar

Out-of-Order processors

» After inst is decoded, place it in issue queue (IQ)
» Select logic picks inst in IQ and sends to FU
» Inst must have all operands ready

» And an available FU

» Up to issue-width inst
» Wake-up logic notify result to dependent inst in 1Q

» 1Q needs comparators to check if dependent

» We must know which operands are ready at insert time

Wakeup Delay (ps)

350

300 P N

250

200

150

100 8-way =
4-way

50 2-way o

8 16 24 56

32 40
Window Size

64

1500

1200

©
1
S

Wakeup delay (ps)
2
2
H

w
&
S

0.

B Maich OR delay
Tag match delay

Tag drive delay

!y

0.8 0.35 0.18
Feature size

"Complexity-Effective Superscalar Processors", S. Palacharla et al., ISCA 1997.

BSC

46/ 61

Computer architecture techniques and power dissipation

Energy efficiency?

®

[load/store window
[issue window
[register file

ACCESS enengy per instruction, nd
o £y @ o -4

(=]

Issue width = 4 Issue width =6 Issue width = 8 Issue width =12 [ssue width = 16

Figure 2: Awverage energies dissipated per committed instruction
(measured on SPEC95); 0.35y feature size, Viq = 3.3V.

"Optimization of High-Performance Superscalar Architectures for Energy Efficiency", V. Zyuban and P. Kogge,
ISLPED, 2000.

BSC

Out-of-Order processors

47/ 61

Computer architecture techniques and power dissipation

Out-of-Order processors

Power breakdown

Intel Penryn

Leakage
269, Sparc Core

28%

Misc
8%
Serg);; 1o SoC
i 6%

Sun UltraSPARC T3

"Penryn: 45-nm Next Generation Intel®CoreTM 2 Processor", V. George et al., IEEE ASSCC, 2007.
"A 40 nm 16-Core 128-Thread SPARC SoC Processor", J.L. Shin et al., IEEE JSSCC, Jan. 2011.

BSC

48/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Current trends and the ParaDIME project

O. Palomar BSC 49/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

The ParaDIME project

» Parallel Distributed Infrastructure for Minimization of
Energy

» Combine techniques, cooperation and sharing of
information between layers (application, runtime,
programming model, hardware, device) for energy-efficient
data-centers

» e.g. annotations for reduced precision and high
performance vs low power sections

DIME

O. Palomar BSC

50/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

The ParaDIME Consortium

@=— O wni
AOTERRAC (imec

LOCAL

AOTerra is now Cloud&Heat (www.cloudandheat.com)

O. Palomar BSC 51/ 61

Computer architecture techniques and power dissipation

Current trends and the ParaDIME project

The ParaDIME stack

O. Palomar

ParaDIME Infrastructure

Data Center

'J

Multi Data Center Scheduler

{ Intra Data Center Scheduler

BSC

52/ 61

Computer architecture techniques and power dissipation

Multi/many-cores

O. Palomar

Current trends and the ParaDIME project

» Trend is to increase number of cores (Xeon Phi)
» Programmability is a great concern/open issue

» Dark silicon also consider a problem

Optimal Number of Cores Speedup

Percentage Dark Silicon

Symmetrie

100%

75%
50%
25%

100%
75%
50%
25%

CPU-Like

100%

75%
50%
25%

1 -

100%

75%
50%
o5%| ¥

"Dark Silicon and the End of Multicore Scaling”, H. Esmaeilzadeh et al., ISCA 2011.

BSC

53/ 61

Computer architecture techniques and power dissipation

Current trends and the ParaDIME project

Coherence and consistency

» Consistency model: write order
» Cache coherence problem: one proc updates data
but another reads old cached value

Memory
Cache contents Cache contents contents for
Time Event for processor A for processorB location X
0 1
1 Processor A reads X 1 1
2 Processor B reads X 1 1 1
3 Processor A stores 0 0 1 0

into X

» Coherent system if:

» If PA reads X after PA writes X, PA reads new value
» |f PA reads X after PB writes X, PA reads new value
» Writes serialization (seen in same order everywhere)

» Enforce coherence granting exclusive access and

invalidating cache lines

» Cache coherence protocols

"Computer Architecture: A Quantitative Approach", H. and P, 5th Ed, 2012.

O. Palomar

BSC

54/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Cache protocols

» Possible states: Modified, Shared, Invalid (MSI)
additionally: Owned, Exclusive (MESI, MOESI)

» Invalidate (if other proc wants to write)
» Send cached copy (if it was written)

» Scalability to many cores? Overhead of maintaining
coherence?

O. Palomar BSC

55/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Message passing

» In ParaDIME we are studying how to build a many-core
without cache coherence
» Precedent: Intel SCCC: Single-Chip Cloud Computer
» Leverage actor-based programming model

» We will include support for cache-to-cache delivery,
avoiding unnecessary copies of data

O. Palomar BSC 56/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Heterogeneous computing

» Heterogeneous systems can be much more power-efficient
(dark silicon, Green500)

» GPGPUs, Xeon Phi, FPGAs, big.LITTLE...

» In ParaDIME, message passing co-processor and vector
accelerators

O. Palomar BSC 57/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Reduced precision

» Switch off as many elements of the processor as possible,
whenever they are not used/necessary (dark silicon again)

» Unused cores, ALUs, etc.

» Shrink cache, ROB, branch predictor at run-time, trading
performance and power

» Reduced precision: operate with much smaller data types.
Save energy in FU, data movement, etc. at the cost of
accuracy

» The programmer indicates in which parts of the code this
can be applied

O. Palomar BSC

58/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Further reading

» "Computer Architecture: A Quantitative Approach", Hennessy and
Patterson, 5th Ed., Morgan Kaufmann, 2012.

» "Computer Organization and Design: The Hardware/Software
Interface”, Patterson and Hennessy, 5th Ed., Morgan Kaufmann, 2013.

» "Computer Architecture Techniques for Power-Efficiency", Kaxiras and
Martonosi, Morgan Claypool, 2008.

» "Dark Silicon and the End of Multicore Scaling", H. Esmaeilzadeh et al.,
ISCA 2011.

» "Complexity-Effective Superscalar Processors”, S. Palacharla et al.,
ISCA 1997.
» Selected ParaDIME papers:
> "System-Level Power and Energy Estimation Methodology for Open Multimedia Applications
Platform”, S. K. Rethinagiri et al., ISVLSI, 2014.
> "Memory Controller for Vector Processor", T. Hussain, ASAP, 2014.
> "Leveraging Transactional Memory for Energy-efficient Computing below Safe Operation Margins",

A. Cristal et al., TRASACT, 2013.

O. Palomar BSC 59/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

Conclusions

» The power wall has led to reevaluate ALL C.A.
» New trade-offs in issue width, out-of-order vs. in-order, etc.
» Performance vs power consumption, latency vs.
throughput, locality
» New design choices, e.g. many simple cores vs. few
complex cores
» Old ideas can be useful now (vector architectures, dataflow
execution, ...)
» A lot of other ideas
» Multi- (many) core are here to stay, but there is a problem
with their programmability
» Programmability wall
» A lot of effort: transactional memory, actors, tasks...
» Dark silicon threat and exascale goal puts even more
pressure to improve power-efficiency
» While importance of mobile market makes energy
minimization the first concern

O. Palomar BSC

60/ 61

Computer architecture techniques and power dissipation Current trends and the ParaDIME project

THANKS!

O. Palom BSC 61/ 61

	Pipelining
	The cache hierarchy
	Speculation
	Out-of-Order processors
	Current trends and the ParaDIME project

